
Discussion Week 5



Reminders

• Deadlines
• HW2 out: Due Nov 10 (Friday) 11:59 PM

• Midterm report: Due Nov 5 (Sunday) 11:59 PM

• No discussion next week
• Veterans Day Holiday (Nov 10)

• Midterm coming up!
• Nov 13 (Monday)



Overview

• Clustering
• Review

• Applications

• Density Estimation



Clustering

• Goal: Automatically segment data into groups of similar points
• Question: When and why would we want to do this?
• Useful for:

• Automatically organizing data
• Understanding hidden structure in some data
• Representing high-dimensional data in a low-dimensional space

• Examples:
• Customers according to purchase histories
• Genes according to expression profile
• Search results according to topic
• MySpace users according to interests
• A museum catalog according to image similarity



Clustering

• Our data

D = {x1, . . . , xN}

• Each data point is p-dimensional, i.e.,

xn = < xn1 , … , xnp >

• Define a distance function between data, d(xn, xm).

• Goal: segment the data into k groups

{z1, … , zN} where zi ϵ {1, … ,K}.



Example data

500 2-dimensional data points: xn = < xn1, xn2 >



Example data

• What is a good distance function here?

• Squared Euclidean distance is reasonable

• d(xn, xm) = 𝑥𝑛 − 𝑥𝑚
2



Example data

• Goal: segment this data into k groups
• What should k be?
• Automatically choosing k is complicated; for now, 4



K-means

• Different clustering algorithms use the data and distance measurements in 
different ways

• Begin with k-means, the simplest clustering algorithm



K-means

• The basic idea is to describe each cluster by its mean value

• This works only for distances such that a mean is well-defined

• The goal of k-means is to assign data to clusters and define these 
clusters with their means



K-means algorithm

• Initialization
• Data: x1:N

• Choose initial cluster means m1:k (same dimension as data)

• Repeat
• Assign each data point to its closest mean

• Compute each cluster mean to be the coordinate-wise average over data 
points assigned to that cluster,

• Until assignments z1:N do not change



K-means example



K-means example
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K-means example



K-means example



K-means example (converges)



Objective function

• How can we measure how well our algorithm is doing?

• The k-means objective function is the sum of the squared distances of 
each point to each assigned mean



Coordinate Descent

• Holding the means fixed, assigning each point to its closest mean 
minimizes F with respect to z1:N.

• Holding the assignments fixed, computing the centroids of each 
cluster minimizes F with respect to m1:k .

• Thus, k-means is a coordinate descent algorithm.

• It finds a local minimum. (Multiple restarts are often necessary.)



Objective for the example data



K-medoids

• In many practical settings, Euclidean distance is not appropriate

• For example,
• Discrete multivariate data, such as purchase histories

• Positive data, such as time spent on a web-page

• k-medoids is an algorithm that only requires knowing distances 
between data points, dn,m = d(xn, xmk )

• No need to define the mean

• Each of the clusters is associated with its most typical example



K-medoids algorithm
• Initialization

• Data: x1:N

• Choose initial cluster identities m1:k

• Repeat
• Assign each data point to its closest center

• For each cluster, find the data point in that cluster that is closest to the other 
points in that cluster

• Set each cluster center equal to their closest data points

• Until assignments z1:N do not change



Choosing k

• Choosing k is a nagging problem in cluster analysis

• Sometimes, the problem determines k
• Example: Clustering customers for k salespeople in a business

• Usually, we seek the “natural” clustering, but what does this mean?

• It is not well-defined



What happens as k increases?
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What happens as k increases?



What happens as k increases?



What happens as k increases?



Heuristic: A kink in the objective

• Notice the “kink” in the objective between 3 and 5

• This suggests that 4 is the right number of clusters



Hierarchical Clustering



Hierarchical Clustering

• Hierarchical clustering is a widely used data analysis tool

• The idea is to build a binary tree of the data that successively merges 
similar groups of points

• Visualizing this tree provides a useful summary of the data



Hierarchical clustering vs. k-means

• k-means or k-medoids requires
• number of clusters k

• initial assignment of data to clusters

• distance measure between data d(xn, xm)

• Hierarchical clustering only requires a measure of similarity between 
groups of data points.



Agglomerative clustering

Algorithm:

1. Place each data point into its own singleton group

2. Repeat: iteratively merge the two closest groups

3. Until: all the data are merged into a single cluster



Example
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Agglomerative clustering

• Each level of the resulting tree is a segmentation of the data

• The algorithm results in a sequence of groupings

• It is up to the user to choose a ”natural” clustering from this sequence



Dendrogram

• Agglomerative clustering is monotonic
• The similarity between merged clusters is monotone decreasing with the level 

of the merge

• Dendrogram: Plot each merge at the similarity between the two 
merged groups

• Provides an interpretable visualization of the algorithm and data

• Useful summarization tool, part of why hierarchical clustering is 
popular



Dendrogram of example data

Groups that merge at high values relative to the merger values of their 
subgroups are candidates for natural clusters.



Group Similarity
• Given a distance measure between points, the user has many choices 

for how to define intergroup similarity.

• Three most popular choices
• Single-linkage: the similarity of the closest pair

• Complete linkage: the similarity of the furthest pair

• Group average: the average similarity between groups

• Other choices
• Centroid

• Medoid



Properties of intergroup similarity

• Single linkage can produce “chaining,” where a sequence of close 
observations in different groups cause early merges of those groups

• Complete linkage has the opposite problem. It might not merge close 
groups because of outlier members that are far apart.

• Group average represents a natural compromise, but depends on the 
scale of the similarities. Applying a monotone transformation to the 
similarities can change the results



Caveats

• Hierarchical clustering should be treated with caution

• Different decisions about group similarities can lead to vastly different 
dendrograms.

• The algorithm imposes a hierarchical structure on the data, even data 
for which such structure is not appropriate.



DBSCAN



Density-Based Clustering

• Form clusters based on density (local cluster criterion), such as 
density-connected points 

• Each cluster has a considerable higher density of points than outside 
of the cluster



DBSCAN

• DBSCAN is a density-based algorithm

• Density = number of points within a specified radius r (Eps)

• A point is a core point if it has more than a specified number of points 
(MinPts) within Eps 
• These are points that are at the interior of a cluster

• A border point has fewer than MinPts within Eps, but is in the 
neighborhood of a core point

• A noise point is any point that is not a core point or a border point



DBSCAN: Core, Border, and Noise points



DBSCAN

• Two parameters:
• Eps: Maximum radius of the neighborhood

• MinPts: Minimum number of points in an Eps-neighborhood of that point

•

• Directly density-reachable: A point p is directly density-reachable 
from a point q w.r.t. Eps, MinPts if
• p belongs to NEps(q)

• q is a core point, core point condition:



Density-Reachable and Density-Connected

• Density-reachable: 
• A point p is density-reachable from a 

point q w.r.t. Eps, MinPts if there is a 
chain of points p1, … , pn; p1= q, pn= p 
such that pi+1 is directly density-
reachable from pi

• Density-connected
• A point p is density-connected to a point 

q w.r.t. Eps, MinPts if there is a point o
such that both p and q are density-
reachable from o w.r.t. Eps and MinPts



DBSCAN

• Relies on a density-based notion of cluster: A cluster is defined as a 
maximal set of density-connected points

• Noise: object not contained in any cluster is noise

• Discovers clusters of arbitrary shape in spatial databases with 



DBSCAN: The algorithm

• If a spatial index is used, the computational complexity of DBSCAN is O(nlogn), 
where n is the number of database objects. Otherwise, the complexity is O(n2)



DBSCAN: Large Eps

Original Points Point types: core (green), 
border (blue), and noise (red)



DBSCAN: Optimal Eps

Original Points Clusters



Eps = 10

Determining Eps and MinPts

• Idea is that for points in a cluster, their kth nearest neighbors are at 
roughly the same distance

• Noise points have the kth nearest neighbor at farther distance

• Can plot sorted distance of every point to its kth nearest neighbor



DBSCAN: Sensitive to Parameters



Applications



Applications of Clustering

• Things in a cluster share similar properties
• Contents of data

• Communities in social networks (Social Network Analysis)

• Relevance of documents (Information Retrieval)

• Meanings of photos (Multimedia)

• Locations of geo-tagged objects

• Styles of music

• It implies
• (Properties Discovery)

A cluster might represent some specific properties

• (Properties Inference)
We can infer properties of unknown data from same-cluster data.



Properties Discovery – POI Identification

• Identify point-of-interests (special locations) to geo-located photos.

• Photos in close locations (same cluster) represent the same POI.



Properties Discovery – Community Detection

• Identify nodes in social networks into several communities.

• Nodes in a community have more interactions and connections.

• Cluster nodes into groups with related information.

• Nodes in a cluster represent a community.



Properties Discovery – Type Discovery

• While a document describes an entity, it might have types.

• Same-cluster documents might share same types



Clustering in Information Retrieval

• Core Problem of Information Retrieval
• Given many documents and a query, rank them by their relevance.

• Clustering Hypothesis
• Closely associated documents tend to be relevant to the same requests



Search Results Clustering

• Cluster search results into several groups.

• Relevance of documents can inference to same-cluster documents.

• More effective information presentation to users.



Density Estimation



Review of Density Estimation

• Goal

• Estimate the density function for a random variable from data

• Can be considered as an extension of histogram 



Example: Mortality Estimation

• Country-specific period lifetables can be utilized. 

• Different bandwidths decide the smoothness

• Can detect distribution shifting 



Many Applications 

• Density-based clustering
• E.g., DBSCAN

• Classification 
• E.g., KNN, what’s the best K?

• Outlier Detection



Nonparametric and parametric methods

• Nonparametric methods
• No assumption about the forms

of the underlying densities

• Applicable to any distribution

• Parametric methods
• Have assumptions about the forms 

of the underlying densities

• Determined by fixed but unknown
parameters



Kernel Density Estimation

• A non-parametric method for density estimation

• A known density function (kernel) is averaged across the observed 
data to create a smooth approximation.













Choice of bandwidth



Histograms vs. Kernel Density Estimation



Example

• Given a dataset 𝑋 = {4, 5, 5, 6, 12, 14, 15, 15, 16, 17}, use Parzen
windows to estimate the density 𝑝(𝑥) at 𝑦 = 3,10,15; use ℎ = 4



Maximum Likelihood Estimation

• A general parametric method for density estimation method

• Estimate a set of model parameters that maximizes the likelihood. 







Example: Coin Flipping

• Estimate the probability 𝜋 of getting a head upon flipping a coin

• Data:
• Flip the coin “independently” 10 times  sample 𝑛 = 10 times

• HHTHHHTTHH

𝑃 𝑑𝑎𝑡𝑎 ∣ 𝜃 = 𝑃 𝐻𝐻𝑇𝐻𝐻𝐻𝑇𝑇𝐻𝐻 𝜋
= 𝜋𝜋 1 − 𝜋 𝜋𝜋𝜋 1 − 𝜋 1 − 𝜋 𝜋𝜋
= 𝜋7 1 − 𝜋 3

• Likelihood function:
𝐿 𝜋 ∣ 𝑑𝑎𝑡𝑎 = 𝐿 𝜋 𝐻𝐻𝑇𝐻𝐻𝐻𝑇𝑇𝐻𝐻
= 𝜋7 1 − 𝜋 3



Example: Coin Flipping (Cont’d)



Example: Coin Flipping (Cont’d)

• More generally, for 𝑛 independent flips with 𝑥 heads and 𝑛 − 𝑥 tails
𝐿 𝜋 ∣ 𝑑𝑎𝑡𝑎 = 𝜋𝑥 1 − 𝑥 𝑛−𝑥

• We want to maximize 𝐿 𝜋 ∣ 𝑑𝑎𝑡𝑎 or 𝐿 𝜋
log 𝐿 𝜋 = 𝑥 log 𝜋 + 𝑛 − 𝑥 log 1 − 𝜋

• Differentiating log 𝐿 𝜋 with repect to 𝜋
𝑑 log 𝐿 𝜋

𝑑𝜋
=
𝑥

𝜋
+ 𝑛 − 𝑥

1

1 − 𝜋
−1 =

𝑥

𝜋
−
𝑛 − 𝑥

1 − 𝜋
• Set the derivative to 0, we have 

ො𝜋 =
𝑥

𝑛



The Gaussian Case: Unknown Mean



The Gaussian Case: Unknown Mean & Variance
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