Discussion Week 5



Reminders

e Deadlines
e HW2 out: Due Nov 10 (Friday) 11:59 PM
 Midterm report: Due Nov 5 (Sunday) 11:59 PM

* No discussion next week
* Veterans Day Holiday (Nov 10)

* Midterm coming up!
* Nov 13 (Monday)



Overview

* Clustering
* Review
* Applications

* Density Estimation



Clustering

e Goal: Automatically segment data into groups of similar points
e Question: When and why would we want to do this?

e Useful for:
e Automatically organizing data
* Understanding hidden structure in some data
* Representing high-dimensional data in a low-dimensional space

* Examples:
e Customers according to purchase histories
* Genes according to expression profile
e Search results according to topic
* MySpace users according to interests
* A museum catalog according to image similarity



Clustering

* Our data
D={xqy, ..., Xy}
e Each data point is p-dimensional, i.e.,
Xp = < Xnpy e s Xpp >
* Define a distance function between data, d(x,, x,,).
* Goal: segment the data into k groups
{z,, ..., zy} where z. € {1, ... K}.



Example data
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500 2-dimensional data points: x,, = <X, X, >



Example data
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 What is a good distance function here?
e Squared Euclidean distance is reasonable
* d(x,, X,) = ”xn — xmllz



Example data
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* Goal: segment this data into k groups
 What should k be?
e Automatically choosing k is complicated; for now, 4



K-means
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 Different clustering algorithms use the data and distance measurements in
different ways

* Begin with k-means, the simplest clustering algorithm



K-means

* The basic idea is to describe each cluster by its mean value
* This works only for distances such that a mean is well-defined

* The goal of k-means is to assign data to clusters and define these
clusters with their means



K-means algorithm

* |Initialization
* Data: x;.
* Choose initial cluster means m,,, (same dimension as data)

* Repeat

* Assign each data point to its closest mean

“n = AT6 fi—‘{r;{].{.rik} d(Xn, m;)

* Compute each cluster mean to be the coordinate-wise average over data
points assigned to that cluster,

mk:Nik_Z Xn

{n:z,=k}

* Until assighnments z,.,, do not change



K-means example
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K-means example
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K-means example
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K-means example

1.73e+01

OBJ=

‘ [} -.f 1.-_'-_ .
L ] . . - %
™ @ ilfii
o nniw‘"- . ‘ _._"_-un_.r-_' A
R X CrieEn
. . o .
-ﬁ-‘- . . o e *®
III , o III L] L . s ®
] ﬁl- l‘ll II . .
[ ] - ’
L ]
vIl-I-l » e L 1]
L ™ L ] J
- .I -. L L ]
-__._-k‘_._-____--_-_- _-_-_-,ul_--____._._-
RT - T I T
-_ld, -fﬁiw . -..f }M-”-‘-h o
] . L ] . [ ]
.i‘-f * . . -.1_-_ HI . %y
. . .
” . . .
T T T T T T
'l g0 g0 o &0 oo

1.0

0.8

0.6

04

02

0.0



K-means example
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K-means example
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K-means example (converges)
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Objective function

* How can we measure how well our algorithm is doing?

* The k-means objective function is the sum of the squared distances of
each point to each assigned mean

F(z:n, ) = ann m,,||?



Coordinate Descent

F(zi:n. M) ZHxn m, ||

* Holding the means fixed, assigning each point to its closest mean
minimizes F with respect to z,.,,.

* Holding the assignments fixed, computing the centroids of each
cluster minimizes F with respecttom,,, .

* Thus, k-means is a coordinate descent algorithm.
* It finds a local minimum. (Multiple restarts are often necessary.)



Objective for the example data
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K-medoids

* In many practical settings, Euclidean distance is not appropriate

* For example,
* Discrete multivariate data, such as purchase histories
* Positive data, such as time spent on a web-page

* k-medoids is an algorithm that only requires knowing distances
between data points, d, ., = d(X,, X )

* No need to define the mean
* Each of the clusters is associated with its most typical example



K-medoids algorithm

* |nitialization

* Data: x;.

* Choose initial cluster identities m,,,
* Repeat

* Assign each data point to its closest center

z,=arg min d(x,, m;)
i{1,....k}

» For each cluster, find the data point in that cluster that is closest to the other
points in that cluster

ik = argMingn: 2=k} X1 zm=ky d(Xn: Xm)
» Set each cluster center equal to their closest data points
my = X,‘k

* Until assignments z1:N do not change



Choosing k

* Choosing k is a nagging problem in cluster analysis

* Sometimes, the problem determines k
* Example: Clustering customers for k salespeople in a business

e Usually, we seek the “natural” clustering, but what does this mean?

e It is not well-defined



What happens as k increases?
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What happens as k increases?
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What happens as k increases?

OBJ=3.3%9e+01
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What happens as k increases?
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What happens as k increases?

OBJ=8.81e+00
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What happens as k increases?
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What happens as k increases?
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What happens as k increases?
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Heuristic: A kink in the objective
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* Notice the “kink” in the objective between 3 and 5
* This suggests that 4 is the right number of clusters



Hierarchical Clustering




Hierarchical Clustering

* Hierarchical clustering is a widely used data analysis tool

* The idea is to build a binary tree of the data that successively merges
similar groups of points

* Visualizing this tree provides a useful summary of the data



Hierarchical clustering vs. k-means

* k-means or k-medoids requires
* number of clusters k
* initial assignment of data to clusters
* distance measure between data d(x,, x.,)

* Hierarchical clustering only requires a measure of similarity between
groups of data points.



Agglomerative clustering

Algorithm:
1. Place each data point into its own singleton group
2. Repeat: iteratively merge the two closest groups

3. Until: all the data are merged into a single cluster



Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Agglomerative clustering

* Each level of the resulting tree is a segmentation of the data
* The algorithm results in a sequence of groupings

* It is up to the user to choose a “natural” clustering from this sequence



Dendrogram

* Agglomerative clustering is monotonic

* The similarity between merged clusters is monotone decreasing with the level
of the merge

* Dendrogram: Plot each merge at the similarity between the two
merged groups

* Provides an interpretable visualization of the algorithm and data

* Useful summarization tool, part of why hierarchical clustering is
popular



Dendrogram of example data

Cluster Dendrogram
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Groups that merge at high values relative to the merger values of their
subgroups are candidates for natural clusters.



Group Similarity

* Given a distance measure between points, the user has many choices
for how to define intergroup similarity.

* Three most popular choices

* Single-linkage: the similarity of the closest pair
dist(K;, K;) = min dist(t;,, t;,)

* Complete linkage: the similarity of the furthest pair
dist(K;, K;) = max dist(t;,, t;,)

e Group average: the average similarity between groups

dist(K;, K) = avg dist(t ip’ Jq)
e Other choices

 Centroid
e Medoid



Properties of intergroup similarity

* Single linkage can produce “chaining,” where a sequence of close
observations in different groups cause early merges of those groups

* Complete linkage has the opposite problem. It might not merge close
groups because of outlier members that are far apart.

* Group average represents a natural compromise, but depends on the
scale of the similarities. Applying a monotone transformation to the
similarities can change the results



Caveats

* Hierarchical clustering should be treated with caution

* Different decisions about group similarities can lead to vastly different
dendrograms.

* The algorithm imposes a hierarchical structure on the data, even data
for which such structure is not appropriate.



DBSCAN



Density-Based Clustering
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* Form clusters based on density (local cluster criterion), such as
density-connected points

* Each cluster has a considerable higher density of points than outside
of the cluster



DBSCAN

 DBSCAN is a density-based algorithm
* Density = number of points within a specified radius r (Eps)

* A point is a core point if it has more than a specified number of points
(MinPts) within Eps

* These are points that are at the interior of a cluster

* A border point has fewer than MinPts within Eps, but is in the
neighborhood of a core point

* A noise point is any point that is not a core point or a border point



DBSCAN:

Core, Border, and Noise points
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DBSCAN

* Two parameters:
* Eps: Maximum radius of the neighborhood
* MinPts: Minimum number of points in an Eps-neighborhood of that point

* Ng,(q): {p belongs to D | dist(p,q) < Eps}

* Directly density-reachable: A point p is directly density-reachable
from a point g w.r.t. Eps, MinPts if

* p belongs to N, (q)
* g is a core point, core point condition: MinPts = 5
| Ngs (@)| > MinPts ° @ Eps =1 cm
@



Density-Reachable and Density-Connected

* Density-reachable:

* A point p is density-reachable from a
point g w.r.t. Eps, MinPts if there is a
chain of points p,, ..., p,; P1= 0, P,=P
such that p,,, is directly density-
reachable from p,

* Density-connected

* A point p is density-connected to a point
g w.r.t. Eps, MinPts if there is a point o
such that both p and g are density-
reachable from o w.r.t. Eps and MinPts




DBSCAN

* Relies on a density-based notion of cluster: A cluster is defined as a
maximal set of density-connected points

* Noise: object not contained in any cluster is noise
* Discovers clusters of arbitrary shape in spatial databases with
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DBSCAN: The algorithm

(1) mark all objects as unvisited;

(2) do

(3) randomly select an unvisited object p;

(4) mark p as visited;

(5) if the e-neighborhood of p has at least MinPts objects

(6) create a new cluster C', and add p to

(7) let N be the set of objects in the e-neighborhood of p;
(8) for each point p’ in N

(9) if p’ is unvisited

(10) mark p’/ as visited;

(11) if the e-neighborhood of p’ has at least M inPts points,
add those points to N;

(12) if p’ is not vet a member of any cluster, add p’ to C;
(13) end for

(14) output C';

(15) else mark p as noise;

(16) until no object is unvisited;

* If a spatial index is used, the computational complexity of DBSCAN is O(nlogn),
where n is the number of database objects. Otherwise, the complexity is O(n?)



DBSCAN: Large Eps

Point types: core (green),

Original Points

border (blue), and noise (red)



DBSCAN: Optimal Eps

Original Points Clusters



Determining Eps and MinPts

* |dea is that for points in a cluster, their k' nearest neighbors are at
roughly the same distance

* Noise points have the k" nearest neighbor at farther distance
* Can plot sorted distance of every point to its k?" nearest neighbor
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DBSCAN: Sensitive to Parameters

Figure 8. DBScan
results for DST with
MinPts at 4 and Eps at
(a) 0.5 and (b) 0.4.

Figura 9. DBScan
results for D52 with
MinPts at 4 and Eps at
{a)5.0, (b) 3.5, and
fc) 3.0.

(a) (b) (c)



Applications



Applications of Clustering

* Things in a cluster share similar properties
* Contents of data
« Communities in social networks (Social Network Analysis)
* Relevance of documents (Information Retrieval)
* Meanings of photos (Multimedia)
* Locations of geo-tagged objects
 Styles of music

* It implies
* (Properties Discovery)
A cluster might represent some specific properties

e (Properties Inference)
We can infer properties of unknown data from same-cluster data.



Properties Discovery — POl |dentification

* |dentify point-of-interests (special locations) to geo-located photos.
* Photos in close locations (same cluster) represent the same POI.
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Figure : Identify POls to Photos with Clustering [Yang et al., SIGIR 2011]



Properties Discovery — Community Detection

Identify nodes in social networks into several communities.
Nodes in a community have more interactions and connections.
Cluster nodes into groups with related information.

Nodes in a cluster represent a community.
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Figure : Detect communities by clustering [Leskovec et al., WWW 2010]



Properties Discovery — Type Discovery

* While a document describes an entity, it might have types.
e Same-cluster documents might share same types

Born Thomas Cruise Mapother [V
July 3, 1962 (age 51)
Syracuse, New York, United
States

Occupation Actor, producer, writer
Years active 1981-present
Religion

Spouse(s) Mmi Rogers (m, 1987-90)
Nicole Kidman (m. 1990-2001)

Katie Holmes (m. 2006-12)
Children 3 (two adopted)
Website
o e

Figure : Discover types of Wikipages by clustering infoboxes [Nguyen et al., Cikm '12]



Clustering in Information Retrieval

* Core Problem of Information Retrieval
* Given many documents and a query, rank them by their relevance.

* Clustering Hypothesis
* Closely associated documents tend to be relevant to the same requests

‘h q2 /
X
AN
N
dxz dyy dy
Doc cluster 1 Doc cluster 2
ooooooo

Figure : lllustration of clustering hypothesis.




Search Results Clustering

* Cluster search results into several groups.
* Relevance of documents can inference to same-cluster documents.

* More effective information presentation to users.

i | products Mutions | press | parme

v Vivisimo ..

Chumterwd! Resaits Top 223 ronutn of ot st 7,917 000 retemnd for the query whale (|

Figure : Vivisimo, a search engine clustering search results.



Density Estimation



Review of Density Estimation

e Goal

« Estimate the density function for a random variable from data

* Can be considered as an extension of histogram
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Example: Mortality Estimation

e Country-specific period lifetables can be utilized.
e Different bandwidths decide the smoothness
* Can detect distribution shifting
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(a) The solid, short-dashed and long- (b) 1990 (long-dash), 2000 (dotted) and
dashed lines correspond to smoothed his- 2010 (solid)
tograms using bandwidths of 0.5, 2 and 3,
respectively.
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Many Applications

* Density-based clustering

* E.g., DBSCAN
e Classification

* E.g., KNN, what’s the best K?
e Qutlier Detection
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Nonparametric and parametric methods

* Nonparametric methods
* No assumption about the forms ..~ a;

of the underlying densities nk 2.

* Applicable to any distribution

= P(xy, X! @)

NON-PARAMETRIC
DENSITY ESTIMATION

e Parametric methods

* Have assumptions about the forms §
of the underlying densities '

* Determined by fixed but unknown
parameters

.

Assumed Underlying PDF Real Data Samples



Kernel Density Estimation

* A non-parametric method for density estimation

* A known density function (kernel) is averaged across the observed

data to create a smooth approximation.

Density
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Kernel Density Estimation

-Given a dataset D = (x4, X5, ..., Xp,),
estimate its density function f(x)

*Kernel density estimator:
X—Xj

~ 1 1
.fh(x)zz ?=1Kh(x_xi)=a ?:]_K( h )
» h: bandwidth, controlling the smoothness of f

» K: a non-negative real-valued mtegrable function,
serving as weighting function

’ f:: K(u)du = 1 (normalization)
* K(u) = K(—u) for all u (symmetric)



Examples of Kernels
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Gaussian Kernel in 1-D case

-Example: Gaussian kernel

1
cK(u) = \szne_Euz

*Scaled kernel

K =K (2

u2

1 L
e 2h?

h/ 21

- In the Gaussian kernel case: K, (u) =



Influence from one data point

The influence of x; to x can be considered
as a weighting function centered at x;

( ) 1 _(x=x¢)?
K,(x —x;) = e 2h?
L
hv2m
x_i=2.2, h=1 x_i=2.2, h=0.6 x_i=2.2, h=0.35

Recall: f,,(x) =%

?leh(x —X;) = h

1

X—X;
h }1:1 K( h L)




Influence from multiple data points

-Aggregate influence from multiple data
points to x
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histogram Density: Each red curve indicates ;I{h (x —x;)
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power

power

Choice of bandwidth

h=1 Too small
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Histograms vs. Kernel Density Estimation

5 :
A = 0.04 I | . h = 0.005
0 0.5 1 0 0.5 |
5 T 5 T
A = 0.08 | h =0.07
0 0 __P\/\
0 0.5 1 0 0.5 1
5 : 5 ;
K= 025 | h=0.2
0 0 ——[xﬁ—/\
0 0.5 1 0 0.5 1

A = h acts as a smoother.



Example

 Given adataset X ={4, 5,5, 6, 12, 14, 15, 15, 16, 17}, use Parzen
windows to estimate the density p(x) at y = 3,10,15; use h =4

M y=15
P y=3 y=10 J'
L L
L1 + *t T + L SR AN A R S B 5
5 10 15 X

1 o, [(x—x® 1 3—4 3-5 3—17
p(y =3) =575 2un=1 K\~ | == |K\—7— ) tK|\——) + K| = 0.0025

p(y=10) =——[0+0+0+0+0+0+0+0+0+0] =0

1

p(y=15)=——[0+0+0+0+0+1+1+1+1+0]=0.1




Maximum Likelihood Estimation

* A general parametric method for density estimation method
* Estimate a set of model parameters that maximizes the likelihood.

L(xy,xe,...,2p;0) L(xy,x0,...,2,;0)

>
N 2
D>



Maximume-Likelihood Estimation

-Data: D = (x1,X>, ..., Xp)
- Parameters: 0
*Model: p(x|0)

- Likelihood of @ with respective to a set of
data samples

L(6; D) = p(D1®) = | | p(xil6)
i=1

» Maximum likelihood principle: find 0 that
maximizes L

+ Agrees the most with the observation of current
dataset



Log-likelihood function

-log-likelihood function
[(6) =InL(0) =Inp(D|O) = Z Inp(x;|0)

*Maximize likelihood function is equivalent
to maximize log-likelihood function

———

0 = arg mglxl(e)
= Vpl(0) =0 -0 -
VQ =

23



Example: Coin Flipping

* Estimate the probability T of getting a head upon flipping a coin

* Data:

* Flip the coin “independently” 10 times =2 sample n = 10 times

e HHTHHHTTHH
P(data | 0) = P(HHTHHHTTHH | 1)
=nan(1l—m)rnnn(l —n)(1 —m)nn
=’ (1-m)3

* Likelihood function:

L(w | data) = L(w | HHTHHHTTHH )
=’ (1-m)3



Example: Coin Flipping (Cont’d)

=

L(w|data) = 77(1 — 7)3
0.0
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o
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Example: Coin Flipping (Cont’d)

* More generally, for n independent flips with x heads and n — x tails
L(w | data) = n*(1 —x)" ™%

* We want to maximize L(m | data) or L(1m)
log L(r) = xlogm + (n — x) log(1 — m)

» Differentiating log L(mr) with repect to T

dlog L(m X n—x
S ()=—+(n—x) ( 1)———
dm T 1—m

e Set the derivative to 0, we have

. X
T =—
n



The Gaussian Case: Unknown Mean

» Consider 1-d Gaussian Distribution
x;i~N(u,c*)
where ¢ is known, L.e., 8 = u

_(x=w)?
e 202

xilp) =
p(x; ) Neros
- The log-likelihood is then

1 i — )2
L(u) = Z Inp(x;|u) :Z(_E]n(zmjz) _ (x;i — 1)

202

)

*The MLE estimator for u is then
AW =00 - =0=>a=-%x



The Gaussian Case: Unknown Mean & Variance

- Consider 1-d Gaussian Distribution

x;~N(u,0o?)
where both i and 02 are unknown, i.e., @ = (i, g%)
(il 07) = o™
X;ilu,o = e 20
P X;H o2

* The log-likelihood is then

l(p,0%) = Z Inp(x;lu, 0?) = Z(—%IH(ZHJZ) _Giz

202

)

- The MLE estimators for 4 and ¢ are then

al(p,o? R R 1

-%:[}:Zi(xi—y)/az=0:>,u=52ix,;

.aa_'(,u,crz)_ 1 (x;j—p)? . — _|1 Y
da? =0=Xi( 252-'_2(1?2)*'\:2)_U:H:r _nzf(x; A

| |
Note it is biased
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